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Abstract. In this work a new method is developed to investigate the Aharonov–Casher effect in a non-
commutative space. It is shown that the holonomy receives non-trivial kinematical corrections.

1 Introduction

In the last few years, theories in non-commutative space
have been studied extensively (for a review see [1]). Non-
commutative field theories are related to M-theory com-
pactification [2], string theory in non-trivial backgrounds
[3] and the quantum Hall effect [4]. Inclusion of non-
commutativity in quantum field theory can be achieved
in two different ways: via the Moyal �-product on the
space of ordinary functions, or defining the field theory
on a coordinate operator space which is intrinsically non-
commutative [1,5]. The equivalence between the two ap-
proaches has been nicely described in [6]. A simple in-
sight in the role of non-commutativity in field theory can
be obtained by studying the one particle sector, which
prompted interest in the study of non-commutative quan-
tum mechanics [7–14]. In these studies some attention
was paid to the Aharonov–Bohm effect [15]. If the non-
commutative effects are important at very high energies,
then one could posit a decoupling theorem that produces
the standard quantum field theory as an effective field
theory and that does not leave the non-commutative ef-
fects. However the experience from atomic and molecu-
lar physics strongly suggests that the decoupling is never
complete and that the high energy effects appear in the
effective action as topological remnants. Along these lines,
the Aharonov–Bohm effect has already been investigated
in a non-commutative space [16]. In this work, we will
develop a new method to obtain the corrections to the
topological phase of the Aharonov–Casher effect, where
we know that in a commutative space the line spectrum
does not depend on the relativistic nature of the dipoles.

This article is organized as follows. In Sect. 2, we
discuss the Aharonov–Casher effect on a commutative
space. In Sect. 3, the Aharonov–Casher effect in a non-
commutative space is studied and a generalized formula
for holonomy is given.
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2 The Aharonov–Casher effect

In 1984 Aharonov and Casher (AC) [17] pointed out that
the wave function of a neutral particle with non-zero mag-
netic moment µ develops a topological phase when trav-
eling in a closed path which encircles an infinitely long
filament carrying a uniform charge density. The AC phase
has been measured experimentally [18]. This phenomenon
is similar to the Aharonov–Bohm (AB) effect. The similar-
ities and the differences of these two phenomena and pos-
sible classical interpretations of the AC effect have been
discussed by several authors [19–21]. In [17], the topolog-
ical phase of the AC effect was derived by considering a
neutral particle with a non-zero magnetic dipole moment
moving in an electric field produced by an infinitely long
filament carrying a uniform charge density. If the particle
travels over a closed path which includes the filament, a
topological phase will result. This phase is given by

φAC =
∮

(µ × E) · dr, (1)

where µ = µσ is the magnetic dipole moment and σ =
(σ1, σ2, σ3), where σi (i = 1, 2, 3) are the 2×2 Pauli matri-
ces. It is possible to arrange that the particle moves in the
x–y plane and travels over a closed path which includes
an infinite filament along the z-axis. The electric field in
the point r = xî + yĵ, where î and ĵ are unit vectors in
the direction of the positive x- and y-axes, is given as

E =
λ

2π(x2 + y2)
(xî+ yĵ), (2)

where λ is the linear charge density of the filament and
the phase is given by

φAC = µσ3

∮
(k̂ × E) · dr = µσ3λ, (3)

where k̂ is a unit vector along the z-axis. This phase is
purely quantum mechanical and has no classical interpre-
tation. The appearance of σ3 in the phase represents the
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spin degrees of freedom. We see that different components
acquire phases with different signs. This is also one of the
points that distinguishes the AC effect from the AB effect
[22]. In this part, we briefly explain a method for obtain-
ing (3). The equation of motion for a neutral spin half
particle with a non-zero magnetic dipole moment moving
in a static electric field E is given by(

iγµ∂
µ +

1
2
µσαβF

αβ −m

)
ψ = 0, (4)

or it can be written as

(iγµ∂
µ − iµγ · Eγ0 −m)ψ = 0, (5)

where γ = (γ1, γ2, γ3) and the γ matrices are defined by

γ0 =
(
I 0
0 −I

)
, γi =

(
0 σi

−σi 0

)
. (6)

We define

ψ = eafψ0, (7)

where a is the matrix to be determined below, f is a time
independent scalar phase, and ψ0 is a solution of the Dirac
equation,

(iγµ∂
µ −m)ψ0 = 0. (8)

Writing ψ0 in terms of ψ and multiplying (8) by eaf from
the left, we obtain

eaf (iγµ∂µ −m)e−afψ = 0, (9)

(ieafγµe−af∂µ − ieafγie−afa ∂if −m)ψ = 0. (10)

Comparing (10) with (5), we find that a and f must satisfy

µγ · Eγ0 = (γ · ∇f)a , aγµ = γµa. (11)

The matrix a can be expressed by some linear combi-
nation of the complete set of 4 × 4 matrices 1, γ5, γµ, γµγ5

and σµν = i
2 [γµ, γν ]. The second member of (11) cannot

be satisfied if all γ1, γ2 and γ3 are present in (10). How-
ever, it is possible to satisfy it if the problem in question
can be reduced to the planar one. This indicates that the
AC topological phase can arise only in two spatial dimen-
sions. Therefore, let us consider a particle moving in the
x–y plane in which case only the matrices γ1 and γ2 are
present in (11), and moreover, ∂3ψ and E3 vanish. The
choice −iσ12γ0 represents a consistent Ansatz. From the
first equation in (11), we get

∇f = µ(k̂ × E), (12)

and the phase is given by

φ(0) = σ12γ0

∮
∇f · dr

= µσ12γ0

∮
(k̂ × E) · dr

= µ

(
σ3 0
0 −σ3

) ∮
(k̂ × E) · dr. (13)

3 The Aharonov–Casher effect
in a non-commutative space

The non-commutative Moyal spaces can be realized as
spaces where the coordinate operator x̂µ satisfies the com-
mutation relations

[x̂µ, x̂ν ] = iθµν , (14)

where θµν is an antisymmetric tensor of space dimension
(length)2. We note that space-time non-commutativity,
θ0i �= 0, may lead to some problems with unitarity and
causality. Such problems do not occur for the quantum
mechanics on a non-commutative space with a usual com-
mutative time coordinate. The non-commutative models
specified by (14) can be realized in terms of a �-product:
the commutative algebra of functions with the usual prod-
uct f(x)g(x) is replaced by the �-product Moyal algebra:

(f � g)(x) = exp
[

i
2
θµν∂xµ

∂yν

]
f(x)g(y)|x=y. (15)

As for the phase space, inferred from string theory, we
choose

[x̂i, x̂j ] = iθij , [x̂i, p̂j ] = i�δij , [p̂i, p̂j ] = 0. (16)

The non-commutative quantum mechanics can be defined
by [7–14]

H(p, x) � ψ(x) = Eψ(x). (17)

The equation of motion for a neutral spin half particle with
a non-zero magnetic dipole moment moving in a static
electric field E is given by

(
iγµ∂

µ +
1
2
µσαβF

αβ −m

)
� ψ = 0, (18)

or it can be written as

(iγµ∂
µ − iµγ · Eγ0 −m) � ψ = 0. (19)

We define

ψ = eafψ0, (20)

where a is the matrix already defined (aγµ = γµa), f is a
time independent scalar phase, and ψ0 is a solution of the
Dirac equation

(iγµ∂
µ −m)ψ0 = 0, (21)

and (19) can be written as

(iγµ∂
µeaf )ψ0 − (iµγ · Eγ0) � ( eafψ0) = 0. (22)

After expanding the second term in (22) up to the first
order of the non-commutativity parameter θij = θεij and
defining kj as

∂jψ0 = (ikj)ψ0, (23)
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the final result up to first order in θ is given by
[
i(γi∂iaf) − iµγ · Eγ0 − i

2
θij [∂i(iµγ · Eγ0)](ikj)

− i
2
θij [∂i(iµγ · Eγ0)]a ∂jf

]
eafψ0 = 0, (24)

or we get the following equation (aγµ = γµa):
[
i(γi∂iaf) − iµγ · Eγ0 − i

2
θij [∂i(iµγ · Eγ0)](ikj)

− i
2
θij [∂i(iµγ · Eγ0)]a ∂jf

]
ψ0 = 0. (25)

It should be noted that expansion of E up to first order
in θ leads to an additive correction to the commutative
holonomy and does not cause a new non-topological be-
havior. A similar situation arises in the non-commutative
Aharonov–Bohm effect. By expanding f up to first order
in θ,

f = f (0) + θf (1) + ..., (26)

we obtain the following equations:

[µγ · Eγ0 − (γi ∂if
(0)) a]ψ0 = 0, (27)

which is equivalent to (11) and
[
γia ∂if

(1) +
1
2
µεijkj∂i(µγ · Eγ0)

− i
2
εij∂i(µγ · Eγ0)a ∂jf

(0)
]
ψ0 = 0. (28)

By choosing a = −iσ12γ0 and after a straightforward cal-
culation we get

∇f (0) = µ(k̂ × E), (29)

and the phase is given by

φ(0) = σ12γ0

∮
∇f (0) · dr

= µσ12γ0

∮
(k̂ × E) · dr

= µ

(
σ3 0
0 −σ3

) ∮
(k̂ × E) · dr. (30)

Substituting (29) in (28) yields
[
iγiσ12γ0∂if

(1) − 1
2
εijkj∂i(µγ · Eγ0) (31)

+
1
2
εij∂i(µγ · Eγ0)σ12γ0µ(k̂ × E)j

]
ψ0 = 0.

After a long but straightforward calculation, the follow-
ing correction to φ(0) for a neutral particle with non-zero

magnetic dipole moment µ and with spin up or down (∓)
is obtained:

�φθ = θσ12γ0

∮
∇f (1) · dr

=
θ

2
σ12γ0ε

ij

(
µ

∮
kj(∂iE2dx1 − ∂iE1dx2)

∓
∮

[(µ∂iE2) µ(k̂ × E)jdx1

−(µ∂iE1) µ(k̂ × E)jdx2]
)
. (32)

The first term is a velocity dependent correction and does
not have the topological properties of the commutative
AC effect and could modify the phase shift. The second
term is a correction to the vortex and does not contribute
to the line spectrum. Using the following notation:

k ∝ v, µ(k̂ × E) ∝ A(0), (33)

the integral in (32) can be mapped to the corrections
which have already been obtained for the Aharonov–Bohm
effect in [16], (2.19), where v and A(0) are the velocity of
the particle and the vector potential in the Aharonov–
Bohm effect.

The total phase shift for the AC effect is given by

φtotal = φ0 + �φθ, (34)

φ0 = µλ, (35)

where λ is the charge per unit length along the filament.
�φθ can be estimated for a circular path and the contribu-
tion to the shift coming from non-commutativity, relative
to the usual shift of phase, is given by

�φθ

φ0
� θ

Rλn
+
θφ0

πR2 , (36)

where λn is the wavelength of the neutral particle and R is
the radius of the approximate path. The non-commutative
contributions are very tiny. The experimental observations
on the AC phase shift [18] can be used to put a limit on the
non-commutativity parameter θ. In [18], a crystal neutron
interferometer has been used and thermal neutrons travel
in half of their paths in a constant electric field. The path
is not circular but can be approximated by a circle with a
radius which is about 1 cm (L = 2.53 cm;R � L sin(22.5◦)
in [18]). Fitting (36) into the accuracy bound of the ex-
periment [18], we obtain

�φθ

φ0
≤ 25%, (37)

√
θ ≤ 107 GeV−1. (38)

The low energy (thermal) neutrons in the experimental
test of the AC effect [18] cause a higher limit for θ as
compared to other limits recently obtained [23–25]; how-
ever, we hope that future experiments with high energy
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neutrons lead to a better limit for the non-commutativity
parameter in the AC effect.
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